
TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Delphi Tutorial – Step-by-Step

 Windows Shell Extension – Icon Overlay

Scope
This is a Delphi tutorial for implementation of a Windows

Shell (Explorer) Extension in form of an Icon Overlay, which

allows the display of a small graphical indication to the user

if a file meets a certain condition. The figure to the right

shows the overlay of a stamp symbol for all .log and .txt files.

Although the conditions to display the overlay or not can be

programmed very detailed and is not only dependent on the

file-name extension, the overlay-icon is very limited … it

cannot be changed dynamically … in other words “only

one icon per icon-overlay.

The tutorial provides a full step-by-step guide building a Delphi project from scratch to achieve the

additional context menu functionality on a Windows Explorer, as shown on the figure.

Background
A Windows Shell Extension is expanding the function of the Windows Explorer and adds additional

functionality, like a context menu when right-clicking on a file or a selection of files.

This tutorial provides a step-by-step (idiot) guide with screenshots and code snippets you can copy

and paste.

Prerequisite
You need a Delphi Compiler - for this project I used Delphi 10 Seattle.

You need Windows Operating System.

Familiarise with the Tutorial - Delphi - Shell Extension - Context Menu Part 1

Consider using a context menu for registering and unregistering DLLs:

 https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32

Feedback - Help
Friendly feedback is always welcome: delphi@ugarbe.de

What will you Learn
- Delphi

- Active-X COM Object

- Register DLL

- Shell Extension Context Menu

https://ugarbe.de/delphi/22-tutorial-delphi-shell-extension-context-menu
https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32
mailto:delphi@ugarbe.de

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Create an Active-X COM Object
Lets go for it – start your Delphi IDE.

Create an Active-X Library
File -> New -> Other

ActiveX -> ActiveX Library

-> a project is created.

Rename the Attribute Name from Project1 to your plugin

name with the _Library. For instance to:

MyIconOverlay_Library:

Note the GUID will be different in your code, as this is a

global unique identifier.

-> Save -> MyIconOverlay_Library.ridl

-> Save All ->

 To save the unit and the project.

MyIconOverlay_Library.ridl

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

The project should look like this:

Add a COM Object
-> File -> New -> Other -> ActiveX -> COM

Object

-> give the CoClass Name to: MyIconOverlay

The rest should be fine

There will be a new unit: Unit1

Open Unit1 and save it as: MyIconOverlay_Code

IMyIconOverlay_Code

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Result of COM Object Creation
Switch to the MyIconOverlay_Code. The unit code looks

like this:

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Build the Code for the Shell Extension

Create an ObjectFactory for initialising the COM Object
Now we adopt the code to write the

initialisation handler which must register our

COM object (the Class we defined:

Class_MyIconOverlay) and add a procedure to

registry keys in the Windows Registry to make

the shell extension known to the Explorer.

For this we define a new type:

TMyIconOverlay_Factory with an

UpdateRegistry procedure and adopt the code

in the initializsation section to create and

instance of the COM object. Lets also add a

finalization section for later.

Here the code for copy pasting:

Declare the Shell Extension Interfaces
Now we tackle the type definition of TMyIconOverlay to provide the interfaces required for a shell

extension. Pending which kind of extension you wish to implement different interfaces need to be

provided. The Icon Overlay extension requires:

class(TComObject, IShellIconOverlayIdentifier)

We need to add the shlObj in the

uses clause, which defines the

IShellIconOverlayIdentifier, which

requires 3 specific procedures

being provided by the object. For

more info on there query the

Microsoft webpages.

Remember that the Icon Overlay

shell extension can only provide a specific (one) icon overay to a file-icon or not. If a file in Explorer is

displayed with that overlay icon is decided in the IsMemberOf function. GetOverlayInfo links to the

icon which will be the overlay and GetPriority can set a priority value, should there my multiple

overlays for the same file.

uses

 Windows, ActiveX, Classes, ComObj, MyIconOverlay_Library_TLB, StdVcl, ShlObj;

type

 TMyIconOverlay = class(TComObject, IShellIconOverlayIdentifier)

 private

 public

 function IsMemberOf(pwszPath: LPCWSTR; dwAttrib: DWORD): HResult; stdcall;

 function GetOverlayInfo(pwszIconFile: LPWSTR; cchMax: Integer; var pIndex:

Integer; var pdwFlags: DWORD): HResult; stdcall;

 function GetPriority(out pPriority: Integer): HResult; stdcall;

 end;

unit MyIconOverlay_Code;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses

 Windows, ActiveX, Classes, ComObj, MyIconOverlay_Library_TLB, StdVcl;

type

 TMyIconOverlay = class(TTypedComObject, IMyIconOverlay)

 protected

 end;

 TMyIconOverlay_Factory = class (TComObjectFactory)

 public

 procedure UpdateRegistry (Register: Boolean); override;

 end;

implementation

uses ComServ;

initialization

 TMyIconOverlay_Factory.Create(ComServer, TMyIconOverlay, Class_MyIconOverlay,

'testing', ciMultiInstance, tmApartment);

finalization

end.

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Adjust Delphi Compiler Options
Before compiling the code adjust the Target Platform to Win64 which

is the 64-bit code which most of the Windows installations require

today.

-> right click on Target Platforms (Win32) -> Add Platform

-> select 64-bit Windows

A proposed adjustment is the location where Delphi

stores the complied code, the MyShellExt.dll in our

case. This step is not important and is purely to

support my style of working

-> Project -> Options

Then you can change the Output Directory and Unit

Output Directory entries to .\

After this the .dll will be created in the same directory as

where the project is saved. (otherwise the .dll will be in

sub-directories – this).

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Prepare the Interface Functions Implementation for Compiler Test
Now we prepare the

implementation of all

functions which have been

defined for the defined 2

types: TMyIconOverlay and

TMyIconOverlay_Factory.

After this step we should be

able to compile the code and

receive the .dll in the code

directory.

Please ensure this works.

There will be warnings but

there must be no errors.

Add the functional code
To see that we are on the right track we need to provide code to the following 2 functions: we need

to update the registry, so the Explorer knows which object is serving an Explorer event – in our case a

right mouse click.

Registry Entries for Context Menu Handlers
First we link our shell extension class (Class_MyIconOverlay) to the icon overlay handlers. This is

done through the registry with this code. When later we will register our .dll this procedure is called

with the value True, if we unregister it will be called with the value False.

If Register the registry key is created and under the default value the GUID (Globally Unique

Identifier) to our object is provided. If Register is false the key will be deleted from the Registry.

implementation

uses ComServ, Registry, SysUtils;

function TMyIconOverlay.IsMemberOf(pwszPath: LPCWSTR; dwAttrib: DWORD): HResult;

begin

end;

function TMyIconOverlay.GetOverlayInfo(pwszIconFile: LPWSTR; cchMax: Integer; var

pIndex: Integer; var pdwFlags: DWORD): HResult;

begin

end;

function TMyIconOverlay.GetPriority(out pPriority: Integer): HResult;

begin

end;

procedure TMyIconOverlay_Factory.UpdateRegistry (Register: Boolean);

begin

end;

procedure TMyIconOverlay_Factory.UpdateRegistry (Register: Boolean);

var

 Reg: TRegistry;

begin

 inherited UpdateRegistry (Register);

 Reg := TRegistry.Create;

 Reg.RootKey := HKEY_LOCAL_MACHINE;

 try

 if Register then

 if Reg.OpenKey('\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers\MyIconOverlay', True) then

 Reg.WriteString('', GUIDToString(Class_MyIconOverlay));

 if not Register then

 if Reg.OpenKey('\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers\MyIconOverlay', False) then

 Reg.DeleteKey('\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers\MyIconOverlay');

 finally

 Reg.CloseKey;

 Reg.Free;

 end;

end;

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Decide if the Icon Overview is Displayed
Now we provide the most important code to decide if the overlay icon is displayed or not. Whenever

explorer is to display an icon for a file our IsMemberOf function is called. If we return the result

S_OK, the overlay-icon will be shown, if we return S_FALSE then the overlay-icon is not shown. The

below example will display the overlay icon for all files ending with ‘.txt’ and all files starting with the

character ‘z’. (Note: textfiles and files ending with ‘.txt’ is not the same – although ‘.txt’ files are

textfiles also ‘.TXT’ files are textfiles, which this examples will not catch).

pwszPath provides a pointer to the full

full path and name of the file. We can

convert this easy to a string holding the

full file name, including its path. The

code then examines this string to either

leave the Result at S_FALSE, or for the 2

conditions, ending with ‘.txt’ or starting

with ‘z’, returning S_OK.

Of coarse the IsMemberOf function can also read the file or make any other checks to trigger the

result. But remember Explorer will trigger this function for each file before displaying it!! Slow code

in this function will slow down Explorer.

Set the Icon Overlay-Icon
The GetOverlayInfo function is to provide the full path to the Overlay-Icon. There are 2 ways of doing

this, either providing the icon-file, or providing a container file (e.g. a .dll) and the index of the icon

to be used. I was not able to make the code running using the container file – if you identify a way,

please contact under delphi@ugarbe.de. So in this example we will provide a single icon-file, by

casting the name to the pwszIconFile variable – set the highlighted PATH to your directory. The icon

file should be small, e.g. 16x16 pixels.

Important Note: this function is only called once, when Explorer starts or restarts. So any dynamic

use to specify different overlay icons will not work! Also, when we register or un-register our DLL

later, we need to enforce Explorer restarts to see the desired effects (more details further down).

Set Overlay Priority
In Explorer up to 15 overlay handlers can be impleted. If there is conflict Explorer will first try to

resolve by comparing priority values each overlay handler can set. Values between 0 (highest

priority) to 100 (lowest priority) can be set.

The priority value is set by the GetPriority

function. In this example we set to highest

priority.

We are done - lets test the code.

function TMyIconOverlay.IsMemberOf(pwszPath: LPCWSTR; dwAttrib: DWORD):

HResult;

var

 fullFileName: string;

begin

 Result := S_FALSE; // default no overlay-icon display

 fullFileName := pwszPath; // convert filename and path to string

 if fullFileName.EndsWith('.txt') then

 Result := S_OK; // all .txt files with overlay-icon

 if extractFileName(fullFileName).StartsWith('z') then

 Result := S_OK; // all files starting with z, with overlay-icon

end;

function TMyIconOverlay.GetPriority(out pPriority: Integer): HResult;

begin

 pPriority := 0; // highest priority

 Result := S_OK;

end;

mailto:delphi@ugarbe.de

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

First testing of code
Now is the time to test and validate that our code works

In principle there are 3 steps: Compile, register the DLL, make Explorer aware of the DLL.

Compile Code
Compile the code and ensure there are no errors. After compilation your project directory should

have the MyIconOverlay.dll file.

Register the DLL
There are many was of doing this. For the beginning just use the command line interface. Although

this is quite cumbersome after a while, you need to know the basiscs (there are many articles in the

web):

-> open CMD with administrator privileges!

… and go to the directory of your project.

When you list the directory (dir) you will

find our MyIconOverlay.dll file.

Ensure the command prompt runs in Administrator mode (top of screenshot).

Now you can register the dll with the following command:

 regsvr32 MyIconOverlay.dll

The registration will be confirmed of being successful.

Note: at this moment the overlay is very likely not

visible in Explorer.

Tip: if you work regulary with Shell Exentsions or .DLLs you could use the freeware tool, RegSvr,

which is a Shell Extension allowing registration and de-registration through Explorer’s context menu

(right click): https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32

https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32

TLP:WHITE
FREEWARE

TLP:WHITE
FREEWARE

Restart Explorer
In order to activate our overlay handler we need to restart Explorer. Although there are many ways of

doing this, I recommend to use the Task Manager for this.

Start the Task Manager. You can let it run in the background during the testing activities.

Close all all Explorer windows you might have open thought the Windows GUI.

Go to Task Manager and find the Windows Explorer process

– you might have to refresh the window by pressing F5. The

Windows Explorer process is likely in the lower part of the

Task Manager listed processes.

Right click on the icon and select Restart.

If you open now an Explorer window and look on a file

which ends with .txt, or starts with a z, then you should

see the icon-overlay

Disable the Shell Extension
If you want to change anything on the Shell Extension, the shell extension needs to be un-registered

and Explorer needs to be restarted. Otherwise you cannot delete the DLL file, nor can you compile a

new version.

On the command line (CMD) in admin mode, go the directory where the DLL file is stored. Use the

command:

regsvr32 -u MyIconOverlay.dll

Afterwards close all Explorer windows and restart Explorer through the Task Manager.

In most cases you should be able to remove or overwrite the MyIconOverlay.dll file. Note: sometimes

Windows is still not allowing the removal, try restart Explorer a further time – as last resort, restart

Windows.

Tip: if you use the freeware tool,

https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32, you can configure it to

automatically restart Explorer when unregistering a DLL file. It will also open Explorer at the path

where the DLL was unregistered.

https://ugarbe.de/useful/25-shell-extension-register-server-regsvr32

